พูเล่นำอเมริกายี่ห้อ Unorthodox MWR Built Cylinder Head - Toyota 2ZZ-GE - Ferrea ValvetrainMWR Stroker Kit - Toyota 2ZZ-GE 2.0L (new!)MWR Moroso Oil Pan - Lotus/Toyota 1ZZ, 2ZZ Piper Cam Set - 2ZZ - BP320 (Stage 2-3) MWR Built Short Block - Toyota 2ZZ-GE 1.9L Stroker MWR Circuitworx Assembled Oil Pump - 2ZZ-GE Crower Connecting Rod Set Toyota 2ZZ-GE 1.8L VVTLi Maxi-Light2ZZ-GE และ 1ZZ-FE เป็นเครื่อง 4 สูบของ บล๊อก ZZ 1800 CC ซึ่งเป็นเครื่องแบบ อลูมิเนียมทั้งลูก แบบแรกของโตโยต้า 1ZZ-FE ผลิตตั้งแต่ปี 1988 (เก่าแล้วอ่ะ) มี 16 วาล์ว จนปี 2000 มาพร้อมระบบวาล์วแปรผัน ตัว 1ZZ-FE มี VVT-i และ 2ZZ-GE เปิดตัว มี VVTL-i ที่เรารู้ ๆ กัน เหนือกว่า VVT-i ที่เลื่อนขึ้นลงได้ด้วยเหมือน VTEC ของ Honda
VVT-i นั้นทำมาให้เครื่อง FE แบบดั้งเดิมนั้นเดินได้รายเรียบยิ่งขึ้น ตอบสนองดีขึ้น แต่มันก็ทำให้เครื่องยนต์ถูกทารุณมากขึ้นเช่นกัน (วิศกรต้องการออกแบบทุกอย่างให้พอดีที่สุด เครื่องเร่งได้เร็วขึ้น โดยผู้ขับขี่ทำทารุณมาขึ้น โดยที่พื้นฐานเดิมไม่ได้ปรับปรุง ก็จะทำให้ชื่อเสียงเรื่องความทนทานไม่ดีด้วย และก็เป็นอย่างนั้นจริง ๆ ZZ-FE มีปัญหาเรื่องความทนทานกว่าเครื่องบล๊อกเก่า ๆ อย่าง A-FE อาจจะมาจาก VVT-i นี่เอง)
ข้อสำคัญที่ความรู้เครื่อง 1ZZ-FE กับ 2ZZ-GE นั้นท่อนล่างไม่เหมือนกัน 1ZZ จะช่วงชักยาวกว่า ลูกสูบจะเล็กกว่าด้วย ทำให้แรงบิดในรอบต่ำ 1ZZ ทำได้ดีกว่า แม้ในรอบปานกลางถึงรอบสูง ก็ดีเช่นเดียวกัน เพียงแต่แรงม้า และแรงบิด กับอัตราเร่งจะไม่ดี เท่า 2ZZ-GE ที่ช่วงชักสั้น ลูกสูบใหญ่
นิสัย 2ZZ-GE ที่รอบต่ำ ๆ จะมีอาการขี้เกียจ จะต้องเหยียบคันเร่งหนักหน่อย จึงไม่แปลกที่ว่า รถ sport MRS, Celica, Matrix ของ toyota จะต้องวาง 1ZZ-FE คู่กับ 2ZZ-GE เพราะ 2ZZ-GE นั้นก็ไม่ใช่เครื่องที่ perfect ทุกย้านกำลัง หลายคนที่ขับ จะชอบ 1ZZ-FE มากว่า 2ZZ-GE
2ZZ-GE ถึงแม้เครื่องจะมีขนาดใหญ่ กว่า 4A-GE ก็เพื่อความแข็งแรง เพราะมันเป็นอลูมิเนียม มันจะไม่แข็งแรงเท่าเหล็ก แต่ทั้งเครื่องนั้น น้ำหนักเบามาก ทุกอย่าง ข้อเหวี่ยง ก้าน ข้อ เสื้อสูบ ถูกออกแบบมาอย่างดี ทำให้ได้อัตราเร่ง และเสถียรภาพของเครื่องที่ดี
ข้อมูลเครื่อง
เครื่องยนต์
แบบเครื่องยนต์ 2ZZ-GE Super Charge
เบนซิน 1,796 ซีซี 4 สูบ 16 วาล์ว
แรงม้า 221 แรงม้า @ 7,800 รอบต่อนาที
แรงบิด 211 Nm @ 5,000 รอบต่อนาที
กำลังอัด -
ระบบเชื้อเพลิง ฉีดน้ำมันเชื้อเพลิงควบคุมด้วยโปรแกรมอิเลคทรอนิคส์ Lotus MPFi
อื่นๆ ใช้ซูเปอร์ชาร์จอัดอากาศ M45
มีระบบวาล์วแปรผัน VVT-i
แบบเครื่องยนต์ 2ZZ-GE
เบนซิน 1,796 ซีซี 4 สูบ 16 วาล์ว
แรงม้า 192 แรงม้า @ 7,800 รอบต่อนาที
แรงบิด 181 Nm @ 6,800 รอบต่อนาที
กำลังอัด 11.5 : 1
ระบบเชื้อเพลิง ฉีดน้ำมันเชื้อเพลิงควบคุมด้วยโปรแกรมอิเลคทรอนิคส์ Lotus MPFi
อื่นๆ มีระบบวาล์วแปรผัน VVTi
แบบเครื่องยนต์ 1ZZ-FE
เบนซิน 1,794 ซีซี 4 สูบ 16 วาล์ว
แรงม้า 134 แรงม้า @ 6,200 รอบต่อนาที
แรงบิด 172 Nm @ 4,200 รอบต่อนาที
กำลังอัด 11.5 : 1
ระบบเชื้อเพลิง ฉีดน้ำมันเชื้อเพลิงควบคุมด้วยอิเลคทรอนิคส์
อื่นๆ มีระบบวาล์วแปรผัน VVTi
รถที่วางเครื่อง2zz-ge
Toyota Celica SS-II (Japan, 187 hp/190 PS)
Toyota Celica GT-S (USA, 180 hp)
Toyota Celica 190/T-Sport (UK, 189 hp)
Toyota Corolla Sportivo (Australia, 189 hp (141 kW)/180 Nm)
Toyota Corolla TS (Europe, (189 hp/192 PS)
Toyota Corolla Compressor (Europe, 222 hp/225 PS)
Toyota Corolla XRS (USA, 164/170 hp)
Toyota Corolla Fielder Z Aero Tourer (Japan, 187 hp/190 PS)
Toyota Corolla Runx Z Aero Tourer (Japan, 187 hp/190 PS)
Toyota Corolla RunX RSi (South Africa, 141kw/180 nm)
Toyota Matrix XRS (USA, 164-180 hp)[4]
Pontiac Vibe GT (USA, 164-180 hp)
Lotus Elise (North America/UK, 190 hp)[7]
Lotus Exige (US/UK, 190 hp NA & 243 hp supercharged)[8][9]
Lotus 2-Eleven (US/UK, supercharged, 252 hp)
ข้อมูลเกียร์
Compression ratio 12:1
6MT
1st gear ratio 3.166
2nd gear ratio 2.05
3rd gear ratio 1.481
4th fear ratio 1.166
5th gear ratio 0.916
6th gear ratio 0.725
Rear gear ratio 3.25
4AT
1st gear ratio 3.943
2nd gear ratio 2.197
3rd gear ratio 1.413
4th fear ratio 1.02
Rear gear ratio 3.145
VVT-I : VARIABLE VALVE TIMING-INTELLIGENCE หนึ่งในระบบแปรผันการเปิด-ปิดวาล์ว เพื่อให้เกิดกำลังสูงอย่างต่อเนื่องในช่วงกว้าง และมีการตอบสนองดีทุกความเร็วรอบของเครื่องยนต์เครื่องยนต์ 4 จังหวะที่ใช้กันทั่วไป มีการทำงานแบ่งเป็น 4 จังหวะ ดูด-อัด-ระเบิด-คาย โดยการหายใจเข้าในจังหวะดูดและการหายใจออกในจังหวะคายของเครื่องยนต์ ทำโดยผ่านตัววาล์วไอดีและไอเสีย ซึ่งมีการควบคุมการเปิด-เปิดด้วยลูกเบี้ยวบนแคมชาฟต์ (เพลาราวลิ้น) ทำหน้าที่กำหนดให้มีช่วงระยะเวลา ความนาน และระยะยกของการเปิดวาล์วตามที่ออกแบบไว้
รอบการหมุนของเครื่องยนต์ที่เป็นช่วงกว้างตั้งแต่รอบเดินเบาเกือบ 1,000 รอบต่อนาที สูงขึ้นไปจนถึงจรดแถบแดงแถวๆ 6,000-7,000 รอบต่อนาที แท้จริงแล้วในแต่ละรอบย่อมต้องการให้หายใจด้วยการเปิดวาล์วที่เริ่มเปิด ความนาน และระยะยกไม่เท่ากัน
แต่ในเมื่อต้องใช้ลูกเบี้ยวบนตัวแคมชาฟต์เป็นตัวกด ในเครื่องยนต์ทั่วไปจึงมีรอบเครื่องยนต์อยู่ช่วงเดียวเป็นช่วงแคบๆ ที่เครื่องยนต์จะทำงานได้ดีที่สุด มีกำลังตอบสนองดีและใช้เชื้อเพลิงได้คุ้มค่า แต่ในช่วงรอบเครื่องยนต์ต่ำกว่าหรือสูงกว่าช่วงนั้น ความสมบูรณ์จะลดลงไป ไม่ใช่เครื่องยนต์จะดับหรือทำงานไม่ได้ แต่ทำได้ไม่ดีเท่ากับช่วงที่วาล์วซึ่งเปิดโดยแคมชาฟต์ทำให้เครื่องยนต์หายใจได้เหมาะสมที่สุด
ลองนึกเปรียบเทียบง่ายๆ กับคนใน 3 ลักษณะ คือ 1.นั่งเฉยๆ 2.วิ่งเหยาะๆ 3.วิ่งเร็ว ถ้ามีการหายใจด้วยความถี่หรือความแรงเท่าเดิมตลอด ก็ต้องมีแค่ช่วงหนึ่งเท่านั้นที่หายใจพอดีกับการใช้แรงใน 3 ลักษณะนั้น หากหายใจถี่หรือนาน แต่นั่งอยู่เฉยๆ ก็ไม่พอดี เพราะไม่ได้ออกแรง แต่ถ้าวิ่งเร็วๆ แล้วหายใจช้าหรือนิดเดียวคล้ายกับตอนที่นั่งเฉยๆ ก็ไม่มีแรงวิ่ง เพราะหายใจไม่ทันได้อากาศไม่พอกับกำลังงานที่ต้องใช้
ในเมื่อคนยังจำเป็นต้องแปรผันการหายใจให้เหมาะกับการออกแรงในขณะนั้น เครื่องยนต์มี่มีรอบการทำงานตั้งแต่เกือบ 1,000 รอบต่อนาทีไปจนถึงแถวๆ 6,000-7,000 รอบต่อนาที ถ้าจะให้ได้ความสมบูรณ์ในการหายใจเพื่อให้ได้ผลออกมาที่ดี ก็จำเป็นต้องมีการแปรผันการหายใจ (หรือการเปิดวาล์วนั่นเอง)ให้เหมาะสมกับรอบของเครื่องยนต์ในแต่ละช่วงการทำงาน
ในรอบต่ำไม่ต้องผลิตกำลังมาก ก็หายใจแบบหนึ่ง รอบปานกลางหรือเร่งฉับพลันต้องการกำลังมาก ก็หายใจแบบหนึ่ง และรอบจัดก็หายใจอีกแบบหนึ่ง วิศวกรเครื่องยนต์ทั่วโลกทราบดีว่า ถ้าเป็นเครื่องยนต์ธรรมดาก็จำเป็นต้องทำใจเลือกแคมชาฟต์ที่มีลูกเบี้ยวเปิดวาล์วที่เหมาะสมในช่วงรอบใดรอบหนึ่ง เช่น จะทำเครื่องยนต์รอบจัดหรือรถแข่งก็เลือกแคมชาฟต์แบบหนึ่ง หากจะทำเครื่องยนต์รอบต่ำใช้งานทั่วไปขับคลานๆ ก็เลือกแคมชาฟต์แบบหนึ่ง ต้องยอมได้อย่างเสียอย่างๆ หลีกเลี่ยงไม่ได้
จึงเห็นว่าเครื่องยนต์ทั่วไปจะมีบุคลิกตายตัว คือ เครื่องยนต์ในรถยนต์ที่ใช้งานทั่วไป ขับรอบต่ำถึงปานกลางจะได้กำลังดี แต่เมื่อต้องการเน้นสมรรถนะโดยเร่งรอบเครื่องยนต์สูงๆ ก็จะไม่แรงสะใจ หรือเครื่องยนต์ในรถสปอร์ตพันธ์แท้แรงจัดในรอบสูง แต่พอขับคลานๆ ในรอบต่ำก็ไม่ค่อยมีแรง เมื่อเร่งรอบเครื่องยนต์ก็มีอาการรอบรอบตอบสนองช้า จนกว่าจะไต่ไปอยู่รอบสูงและก็ต้องเลี้ยงรอบไว้อย่างนั้น ตกมารอบต่ำเมื่อไรเรี่ยวแรงก็ถดถอย ตามที่เห็นในกราฟแสดงแรงม้าแรงบิดของเครื่องยนต์ทั่วไป มักจะเป็นเส้นที่มีทรงคล้ายภูเขา คือ ไต่ขึ้นไปเป็นยอดเขาแล้วมียอดแหลมนิดเดียวก็วูบลงมาอีกด้าน ไม่ใช่ยอดเขาหัวตัดที่มีกำลังสูงในช่วงรอบกว้าง
วิศวกรเครื่องยนต์มีความฝันก็คือ จะทำอย่างไรให้เครื่องยนต์มีกำลังสูงในช่วงรอบกว้างกว่าที่คุ้นเคยกัน กราฟแรงม้าแรงบิดเป็นภูเขาหัวตัด มีแรงดีในช่วงรอบกว้างๆ เหมือนมีแคมชาฟต์หลายแท่งสลับกันทำงานในแต่ละรอบเครื่องยนต์ เปลี่ยนแท่งแคมชาฟต์ได้อย่างฉับไว ความเป็นจริงไม่มีทางเลยที่จะสลับหลายแท่งแคมชาฟต์ในแต่ละรอบเครื่องยนต์ได้ เพราะรอบเครื่องยนต์หมุนเร็วหลายพันรอบต่อนาทีและเปลี่ยนแปลงเร็วมากขึ้นลงหลายพันรอบในช่วงไม่กี่วินาที
คำตอบ คือ ต้องทำให้เครื่องยนต์มีการแปรผันการหายใจโดยเฉพาะการหายใจเข้าผ่านวาล์วไอดี ให้เปลี่ยนแปลงในแต่ละรอบเครื่องยนต์ได้คล้ายคนที่นั่งเฉยๆ ก็หายใจธรรมดา แต่พอวิ่งเหยาะๆ ก็หายใจถี่ขึ้น และเปลี่ยนไปหายใจทั้งถี่ทั้งแรงเมื่อวิ่งเร็วๆ การแปรผันการเปิดวาล์วมีหนึ่งในวิธีที่สามารถทำได้และเห็นผล ชัดเจนต้องทำที่แคมชาฟต์ ซึ่งเป็นชิ้นส่วนที่ทำหน้าที่ในทางกลไกโดยตรงที่จะสั่งให้วาล์วเปิด-ปิด โดยมีการคิดค้นหลายวิธีที่จะแปรผันการเปิดวาล์วโดยทำกันที่แคมชาฟต์
1 ในวิธีนั้น คือ การใช้แคมชาฟต์และลูกเบี้ยวเหมือนปกติ แต่ไปเพิ่มอุปกรณ์พิเศษที่หัวด้านหน้าสุดของแคมชาฟต์ ทำหน้าที่เยื้องไปมาแปรผันกับตำแหน่งของข้อเหวี่ยง ให้แคมชาฟต์เริ่มเปิดวาล์วก่อนหรือล่าช้าไปจากปกติให้เหมาะสมกับรอบสูงรอบต่ำของเครื่องยนต์ เมื่อเปรียบเทียบกับการเปิดวาล์วปกติที่ต้องสัมพันธ์กับตำแหน่งของข้อเหวี่ยง การเยื้องหรือแปรผันช่วงเวลาด้วยชุดหัวแคมชาฟต์แบบพิเศษนี้ จะถูกควบคุมด้วยระบบอิเล็กทรอนิกส์ รับข้อมูลและสถานะต่างๆ ของเครื่องยนต์และรถยนต์มาประมวลผล แล้วสั่งให้หัวแคมชาฟต์เกิดการเยื้องไปมาอย่างฉับไว แปรผันอย่างเหมาะสมตามรอบของเครื่องยนต์ที่เปลี่ยนแปลงอยู่ตลอดเวลาโดยอัตโนมัติ เช่น ระบบ VVT-i ของโตโยต้า
ผู้ขับจะไม่ทราบอาการเปลี่ยนแปลงนั้นเลย รอบเครื่องยนต์ไม่มีกระตุก การตอบสนองของกำลังเครื่องยนต์ดีเยี่ยมโดยที่ไม่มีอาการกระชาก ไอเสียสะอาดมลพิษต่ำ แม้แต่จ้องมองรอบของเครื่องยนต์บนมาตรวัด ก็จะไม่ทราบถึงการแปรผันการเปิดวาล์วนั้นเลย ทุกอย่างเป็นไปอย่างนุ่มนวลและทำงานอย่างต่อเนื่องโดยอัตโนมัติ ผู้ขับไม่ต้องกดปุ่มปรับเปลี่ยน ไม่ต้องสั่งงาน เพราะระบบควบคุมจะทำเองทั้งหมด
การแปรผันการเปิด-ปิดวาล์วไอดี ในการหายใจเข้าของเครื่องยนต์ มีความจำเป็นมากกว่าด้านวาล์วไอเสียที่หายใจออก ซึ่งไอเสียจะมีแรงดันไหลออกไปเองเป็นส่วนใหญ่ ระบบนี้จึงมักจะใช้กับชุดวาล์วไอดีเท่านั้น โดยจะเป็นการแปรผันเฉพาะช่วงเวลาที่จะเริ่มต้นเปิดไล่ไปจนถึงปิด โดยความนานและระยะยกของการเปิดวาล์วยังเท่าเดิม เพราะใช้ลูกเบี้ยวเดิมชุดเดียว แต่มีหัวแคมชาฟต์แบบพิเศษที่เยื้องไปมาได้ ซึ่งก็เหลือเฟือสำหรับการใช้งานทั่วไปแล้ว
นอกจากนั้นโตโยต้า ยังมีระบบที่เหนือชั้นขึ้นไปอีก คือ ระบบ VVTL-i = VARIABLE
VALVE TIMING AND LIFT-INTELLIGENCE คือ แท่งแคมชาฟต์จะมีลูกเบี้ยวเพิ่มขึ้น และมีระบบกระเดื่องกดวาล์วแบบพิเศษเพิ่มขึ้นมา คอยสลับชุดลูกเบี้ยวใช้งานในแต่ละรอบ ในช่วงเครื่องยนต์หมุนรอบต่ำถึงปานกลางใช้ลูกเบี้ยวชุดหนึ่ง พอเข้าสู่ช่วงรอบสูงก็สลับกระเดื่องไปใช้ลูกเบี้ยวอีกชุดหนึ่งในการเปิดวาล์ว ใช้ในรถสปอร์ต เช่น เซลิก้า
เปรียบเทียบกับระบบอื่น
ระบบแปรผันการเปิดวาล์ว แยกได้เป็น 3 แบบหลัก ไล่จากความยุ่งยากและผลที่ได้จากได้ผลดีน้อยไปมาก คือ
1. แปรผันช่วงเวลา แต่ความนานและระยะยกเท่าเดิม ใช้ลูกเบี้ยวเดิม โดยไปเยื้องกันที่หัวแคมชาฟต์ เช่น VVT-i, VANOS
2. แปรผันทั้งหมด ทั้งช่วงเวลา ความนาน และระยะยก โดยเปลี่ยนลูกเบี้ยวไปเลย ใช้ระบบกระเดื่องพิเศษคอยสลับลูกเบี้ยว เช่น VTEC, MIVEC
3. แปรผันทั้งหมดและเยื้องช่วงเวลา นำแบบ 1 ทำงานร่วมกับแบบ 2 คือ เยื้องที่หัวแคมชาฟต์และสลับลูกเบี้ยวด้วยกระเดื่องพิเศษ เช่น i-VTEC, VVTL-i
ระบบ VVT-i จัดอยู่ในแบบแรก คือ เยื้องที่หัวแคมชาฟต์เท่านั้น ให้ผลดีน้อยที่สุดใน 3 แบบ แต่ก็มีความยุ่งยากน้อยที่สุด และมีหลายยี่ห้อนิยมใช้ เพราะความง่ายแต่ได้ผลดีพอสมควรนั่นเอง
สรุปง่ายๆ กับการแปรผันการเปิด-ปิดวาล์ว ก็เหมือนคนที่หายใจได้หลายแบบในแต่ละสภาวะที่แตกต่างกัน ทำให้เครื่องยนต์ได้ความสมบูรณ์ในการทำงานทุกช่วงนั่นเอง แต่มีหลายรูปแบบการทำงาน ไม่ใช่เห็นว่าแปรผันได้แล้วจะดีเท่ากันหมดต้องดูว่าแปรผันแบบใดแค่ไหน
VTEC ย่อมาจาก (VARIABLE VALVE TIMING AND VALVE LIFT ELECTRONIC CONTROL SYSTEM) คือ ระบบที่ควบคุมการทำงานของวาล์วไอดี ให้เหมาะสมกับการทำงานของ รอบเครื่องยนต์ในแต่ละช่วง โดยในเครื่องยนต์ปกติทั่วไป ที่ไม่มีระบบ VTEC หรือการควบคุม การทำงานของวาล์วไอดี จะมีระบบและช่วงเวลาของการเปิด-ปิดวาล์วไอดีที่ตายตัว นั่นหมายถึงว่า ปริมาณของอากาศที่ไหลเข้าสู่ห้องเผาไหม้ จะสม่ำเสมอเท่า ๆ กัน ไม่ว่าจะเป็นรอบเครื่องยนต์ที่สูง หรือต่ำ
โดยปติสัดส่วนอากาศที่เข้าไปผสมเชื้อเพลิงในห้องเผาไหม้นั้น ต้องมีปริมาณที่เหมาะสม เพื่อที่จะให้การเผาไหม้สมบูรณ์หมดจด ดังนั้นเครื่องยนต์ธรรมดาทั่ว ๆ ไป ไม่สามารถทำให้เหมาะสม ได้ คือ ไม่สมบูรณ์ 100% นั่นเอง
ระบบ VTEC หรือระบบควบคุมการทำงานของวาล์วไอดี จะควบคุมระยะและช่วงเวลา ของการเปิด-ปิดวาล์วไอดี ให้เหมาะสมกับการทำงานของรอบเครื่องยนต์ ซึ่งผลลัพธ์ที่ได้ก็คือ ส่วนผสมของอากาศที่เข้าห้องเผาไหม้ จะอยู่ในสัดส่วนที่เหมาะสมตลอดเวลา และส่งผลต่อเนื่องกับการประหยัดเชื้อเพลิง ตลอดจนกำลังที่เพิ่มขึ้นด้วย
ที่รอบเครื่องยนต์ต่ำ เครื่องยนต์ต้องการอากาศในการเผาไหม้ในปริมาณที่ต่ำกว่า รอบเครื่องยนต์สูง ซึ่งอาจจะเปรียบเทียบได้กับการที่คนเราเดินและวิ่ง ต่างก็ต้องการอากาศในการหายใจที่ไม่เท่ากัน โดยระบบ VTEC จะบังคับให้วาล์วไอดีตัวที่หนึ่ง (ซึ่งปกติจะมีวาล์วไอดี 2 ตัว วาล์วไอเสีย 2 ตัว ต่อ 1 สูบ) เปิดน้อยกว่าวาล์วไอดีอีกตัวหนึ่ง ทำให้อากาศไหลเข้าสู่ห้องเผาไหม้ในปริมาณที่เหมาะสม กับที่เครื่องยนต์ต้องการในการเผาไหม้
สำหรับที่รอบเครื่องยนต์สูง ระบบ VTEC จะบังคับให้วาล์วไอดีทั้ง 2 ตัว เปิดในระยะที่กว้างขึ้น และในช่วงเวลาที่มากขึ้น เพื่อทำให้อากาศที่ไหลเข้าสู่ห้องเผาไหม้ได้มากขึ้น เพียงพอกับการที่เครื่องยนต์ในรอบเครื่องยนต์สูงต้องการ
ด้วยสาเหตุนี้เอง เครื่องยนต์ที่มีระบบ VTEC จึงมีสมรรถนะสูงที่จะทำให้ทุกช่วงของการขับขี่ ไม่ว่าจะเป็นรอบเครื่องยนต์สูงหรือต่ำ มีการตอบสนองที่สมบูรณ์ไม่ว่าจะเป็นการประหยัดเชื้อเพลิง หรือกำลังของเครื่องยนต์ ซึ่งเครื่องยนต์ของรถยนต์ทั่ว ๆ ไป ไม่สามารถทำได้ เพราะไม่มีระบบควบคุมอย่าง VTEC นั่นเอง
ตอนนี้คงหายสงสัยแล้วว่า ทำไมรถที่ใช้เครื่องยนต์ระบบ VTEC ถึงได้แรงขนาดนั้น
หมายเหตุ - การทำงานของเครื่องยนต์ที่มีระบบ VTEC นั้น จะมีตัวเซนเซอร์ 4 ตัว ซึ่งจะส่งสัญญาณไปยังกล่อง EUC (ELECTRONIC CONTROL UNIT) เพื่อทำการประมวลผล และจะสั่งงานให้แรงดันน้ำมันเครื่องทำการควบคุมการเปิด-ปิดวาล์วไอดี
ขอบคุณเว็บเพื่อนบ้านด้วยครับ สำหรับข้อมูล